Profiling

It is important to generate a profile of code performance to understand where to focus optimization efforts. The following tools have been used effectively with Python and C++ code.

Python Profiling

A useful guide to optimization of python code in general, and SciPy/NumPy in particular, is: http://scipy-lectures.github.io/advanced/optimizing/.

Function-level profiling

Consider the code in mosaic.py. To profile it:

python -m cProfile -o cprofile-mosaic.dat `which mosaic.py` \
    /data3a/work/price/SUPA-MIT/rerun/cosmos --id field=COSMOS \
    filter=W-S-I+ expTime=120.0 --clobber-config

Then, in a Python session:

import pstats
p = pstats.Stats("cprofile-mosaic.dat")
p.sort_stats("cumulative").print_stats(30) # Print top 30 cumulative

The results are:

n calls (6698794 primitive calls) in 36.536 seconds

  Ordered by: cumulative time
  List reduced from 4671 to 30 due to restriction <30>

  ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       1    0.004    0.004   36.538   36.538 /home/price/hsc/meas_mosaic/bin/mosaic.py:3(<module>)
       1    0.000    0.000   34.707   34.707 /data1a/ana/products2.1/Linux64/pipe_base/HSC-2.4.1a_hsc/python/lsst/pipe/base/cmdLineTask.py:243(parseAndRun)
       1    0.000    0.000   34.324   34.324 /data1a/ana/products2.1/Linux64/pipe_base/HSC-2.4.1a_hsc/python/lsst/pipe/base/cmdLineTask.py:87(run)
      30    0.000    0.000   34.317    1.144 {map}
       1    0.000    0.000   34.303   34.303 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:45(__call__)
       1    0.073    0.073   34.303   34.303 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:1112(run)
       1    0.176    0.176   34.230   34.230 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:950(mosaic)
       1    2.404    2.404   25.686   25.686 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:268(readCatalog)
     360    0.740    0.002   20.289    0.056 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:205(getAllForCcd)
    1008    0.012    0.000   13.592    0.013 /data1a/ana/products2.1/Linux64/daf_persistence/HSC-2.1.2a_hsc/python/lsst/daf/persistence/butlerSubset.py:171(get)
    1008    0.025    0.000   13.579    0.013 /data1a/ana/products2.1/Linux64/daf_persistence/HSC-2.1.2a_hsc/python/lsst/daf/persistence/butler.py:209(get)
     648    0.007    0.000   12.235    0.019 /data1a/ana/products2.1/Linux64/daf_persistence/HSC-2.1.2a_hsc/python/lsst/daf/persistence/butler.py:239(<lambda>)
     648    0.014    0.000   12.228    0.019 /data1a/ana/products2.1/Linux64/daf_persistence/HSC-2.1.2a_hsc/python/lsst/daf/persistence/butler.py:386(_read)
     324    0.001    0.000   10.380    0.032 /home/price/hsc/afw/python/lsst/afw/table/tableLib.py:7836(readFits)
     324   10.379    0.032   10.379    0.032 {_tableLib.SourceCatalog_readFits}
       1    0.121    0.121    7.344    7.344 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:318(mergeCatalog)
       1    0.000    0.000    6.680    6.680 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicLib.py:1400(kdtreeSource)
       1    6.680    6.680    6.680    6.680 {_mosaicLib.kdtreeSource}
     360    0.001    0.000    2.248    0.006 /home/price/hsc/afw/python/lsst/afw/image/imageLib.py:8635(makeWcs)
     360    2.137    0.006    2.248    0.006 {_imageLib.makeWcs}
     648    0.331    0.001    2.148    0.003 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:173(selectStars)
  153718    0.679    0.000    1.899    0.000 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicLib.py:776(__init__)
     324    0.001    0.000    1.779    0.005 /home/price/hsc/afw/python/lsst/afw/table/tableLib.py:6266(readFits)
     324    1.779    0.005    1.779    0.005 {_tableLib.BaseCatalog_readFits}
    2916    0.178    0.000    1.450    0.000 /home/price/hsc/afw/python/lsst/afw/table/tableLib.py:726(find)
     360    0.000    0.000    1.128    0.003 /data1a/ana/products2.1/Linux64/daf_persistence/HSC-2.1.2a_hsc/python/lsst/daf/persistence/butler.py:236(<lambda>)
     360    0.001    0.000    1.127    0.003 /data1a/ana/products2.1/Linux64/daf_butlerUtils/HSC-2.2.0c_hsc/python/lsst/daf/butlerUtils/cameraMapper.py:315(<lambda>)
     360    0.001    0.000    1.126    0.003 /home/price/hsc/afw/python/lsst/afw/image/imageLib.py:1159(readMetadata)
     360    1.126    0.003    1.126    0.003 {_imageLib.readMetadata}
       1    0.004    0.004    1.036    1.036 /home/price/hsc/meas_mosaic/python/lsst/meas/mosaic/mosaicTask.py:3(<module>)

It is often most useful to look at the cumtime column, which is the time spent in that function and what it calls. The results here show that 10/36 = 28% is being spent in readFits, but 26/36 = 72% is devoted to I/O (readCatalog). That might suggest that some Python code should get pushed down to C++. If you do:

p.print_callees("readCatalog")
p.print_callees("getAllForCcd")

you can see that the cumtime column doesn’t add up to the cumtime values in the above, so the remaining time is time spent within those functions doing work.

For more details on pstats and python profiling in general see http://docs.python.org/2/library/profile.html.

A potentially useful tool for visualising the results is http://www.vrplumber.com/programming/runsnakerun/.

Line profiling

Having found the particular function that’s consuming all the time, you may want finer granularity. For this, use line profiler. Installation is a simple matter of:

pip install line_profiler

Put an @profile decorator on the function of interest, and run:

kernprof.py -l -v /path/to/script.py <arguments>

C++ Profiling

igprof

Profiling C++ code can be done with igprof:

igprof -pp -z -o igprof-mosaic.pp.gz python `which mosaic.py` /data3a/work/price/SUPA-MIT/rerun/cosmos --id field=COSMOS filter=W-S-I+ expTime=120.0 --clobber-config
igprof-analyse -d -v -g igprof-mosaic.pp.gz > igprof-mosaic.pp.txt

That provides the cumulative profile (top) and then the caller/callee profiles further down (see http://igprof.org/text-output-format.html). There is a fancy cgi-bin setup for browsing the profiles, but it requires setting up your Apache server. This may or may not be worth the trouble.

Note that there is a bug in igprof (or its dependency, libunwind) that sometimes causes the process to hang. The recommended workaround is “to make sure you have a hot cache for your libraries (cat *.so >/dev/null)”. A slightly more complete command is

(export IFS=:; while true ; do for DIR in $LD_LIBRARY_PATH ; do find $DIR -name "*.so" -exec cat {} > /dev/null \; ; done; sleep 5; done) &

sprof

sprof is part of glibc, so should be available on most Linux systems. Unlike its cousin, gprof, it does not require recompilation and it works on shared libraries, so can be used with your current stack setup, whatever that may be. Unfortunately, it allows profiling only one shared library at a time, but generally the shared library of interest can be identified using python profiling. Here’s an example using sprof to profile the CModel code in meas_modelfit (which is exercised by measureCoaddSources.py):

export LD_PROFILE=libmeas_modelfit.so
export LD_PROFILE_OUTPUT=`pwd`
measureCoaddSources.py /scratch/pprice/ci_hsc/DATA --rerun ci_hsc --id patch=5,4 tract=0 filter=HSC-I
sprof -p -q libmeas_modelfit.so libmeas_modelfit.so.profile > libmeas_modelfit.so.profile.txt

The output of sprof contains a cumulative profile at the top, followed by the caller/callee profiles.